Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 35(24): e9208, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34606659

RESUMO

RATIONALE: Methysticin is a naturally occurring ingredient isolated from Piper methysticum Forst. The metabolic profile of methysticin is unknown. The goal of this study was to elucidate the metabolism of methysticin using rat and human liver microsomes and hepatocytes. METHODS: The incubation samples were analyzed using ultra-high-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (UHPLC-HRMS). The structures of the metabolites were characterized based on the elemental composition, exact mass, and product ions. RESULTS: A total of 10 metabolites were detected and identified. Among these metabolites, M4 (ring opening of 1,3-benzodioxole) was the predominant metabolite in rat and human liver microsomes. M4 and its glucuronide conjugate (M2) were the major metabolites in rat and human hepatocytes. The metabolic pathways of methysticin are summarized as follows: (a) oxidative ring opening of 1,3-benzodioxole forms the catechol derivative (M4), which subsequently undergoes glucuronidation (M1 and M2), methylation (M8), and sulfation (M7). (b) Demethylation to yield desmethyl methysticin (M6), followed by glucuronidation (M3 and M5). (c) Hydroxylation (M9 and M10). CONCLUSIONS: For the first time, this study provides new information on the in vitro metabolic profiles of methysticin, which facilitates an understanding of the disposition of this bioactive ingredient.


Assuntos
Hepatócitos/química , Microssomos Hepáticos/química , Piranos/química , Piranos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Hepatócitos/metabolismo , Humanos , Hidroxilação , Espectrometria de Massas , Metaboloma , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos
2.
BMC Complement Altern Med ; 14: 166, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24884952

RESUMO

BACKGROUND: Kaliziri extract (KZE) is a traditional Uyghur medicine (TUM), used by traditional hospitals in China as an injection for treatment of vitiligo for more than 30 years. Clinical application has shown that this medicine has obvious therapeutic effects. However, its phytochemical analysis and mechanism have not been examined. METHODS: KZE was extracted from seeds of Kaliziri [Vernonia anthelmintica (L.) Willd.] in ethanol-water (80:20, v/v), its components were identified by LC-MS/MS, and the signaling pathway of melanin synthesis in KZE treated murine B16 melanoma cells was examined by western blotting. RESULTS: Liquid chromatography-mass spectrometry analysis confirmed that the main components of KZE are flavonoids. KZE increased the tyrosinase activity and melanin content in a dose-dependent manner at concentrations of 5-40 µg/ml, and treatment with 20 µg/ml of KZE enhanced the expression of tyrosinase in B16 cells in a time-dependent manner. CONCLUSIONS: KZE induced melanogenesis by increasing the expression of TYR, TRP-1, TRP-2 and MITF in B16 cells.


Assuntos
Oxirredutases Intramoleculares/biossíntese , Melanoma Experimental/metabolismo , Fator de Transcrição Associado à Microftalmia/biossíntese , Monofenol Mono-Oxigenase/biossíntese , Oxirredutases/biossíntese , Extratos Vegetais/farmacologia , Vernonia/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Oxirredutases Intramoleculares/genética , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/genética , Oxirredutases/genética , Extratos Vegetais/química , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...